Volume 7, Supplement 2; 2023

eISSN: 2523-6709 pISSN: 2523-6695 Review Article

Unchain Your Heart: Battling Coronary Artery Disease

Abrar Bashir Malik

Mashoog Ahmad Mir

Mohd Altaf Dar*

*Corresponding Author

Department of Pharmacology, CT Institute of

Pharmaceutical Sciences, PTU, Jalandhar Punjab, India

Department of Pharmacology, CT Institute of

Pharmaceutical Sciences, PTU, Jalandhar Punjab, India

Department of Pharmacology, CT Institute of

Pharmaceutical Sciences, PTU, Jalandhar Punjab, India.

ABSTRACT

Coronary Artery Disease (CAD) remains a significant contributor to illness and mortality on a global scale. It is characterized by the gradual narrowing of coronary arteries due to the formation of atherosclerotic plaques, leading to a disruption in the blood supply to the heart muscle. This often results in ischemic events such as angina and heart attacks. This summary offers a concise overview of CAD, concentrating on its causes, risk factors, clinical presentation, and contemporary methods of treatment. The development of CAD involves a complex interaction of genetic predisposition, traditional risk factors (such as hypertension and abnormal lipid levels), and lifestyle factors. Despite its subtle beginnings, CAD can show itself through symptoms like angina, breathlessness, or silent ischemia. Early detection is crucial and can be aided by stress tests, coronary angiography, and non-invasive imaging techniques. Approaches to managing CAD encompass adjustments to one's lifestyle, pharmacological interventions, and invasive procedures. Lifestyle changes involve dietary improvements, physical activity, and smoking cessation, all of which have been proven to slow down the progression of CAD. Medications like antiplatelets, statins, and beta-blockers target risk factors and alleviate symptoms. Invasive treatments such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) restore blood flow, leading to better quality of life and increased survival rates. In conclusion, the widespread occurrence of CAD and its clinical implications highlight the importance of proactive prevention and evidence-based treatment. Advances in diagnostic methods and therapeutic approaches continue to shape the management of CAD, leading to improved outcomes and instilling optimism in the fight against this challenging cardiovascular condition.

Keywords: Heart, Coronary artery, Lifestyle, medications.

Introduction

CAD is the leading cause of death worldwide. CAD refers to the pathologic process of atherosclerosis affecting the coronary arteries. CAD includes a spectrum of diagnoses including angina pectoris, MI, silent myocardial ischemia, and sudden cardiac death [1]. Atherosclerosis encompasses several closely related processes that tend to occur together, including disruptions in lipid levels, blood clot formation, inflammation, activation of vascular smooth cells, changes in blood vessel structure, activation of platelets, dysfunction of the inner vessel lining, oxidative stress, alterations in the body's matrix metabolism, and genetic influences. Risk factors for coronary artery disease (CAD) are prevalent among a significant portion of the general population. These factors include high blood pressure, disturbances in the metabolism of lipids and lipoproteins, diabetes, chronic kidney disease, advancing age, gender, lifestyle choices, smoking,

dietary habits, obesity, and a family history of the condition [2]. Atherosclerosis represents the underlying cause of CAD in the majority of cases and develops gradually, with lesions detected as early as in adolescence. Knowledge of the underlying mechanisms leading to atherosclerosis is of utmost importance to lead to a better understanding and optimal management of the disease [3]. According to 2016 Center for Disease Control and Prevention Statistics, CAD accounted for approximately 13% of deaths in the US in 2016, causing a total of 363,452 deaths [4]. Nearly 1 in 5 patients with no known history of coronary artery disease (CAD) will die when presenting with their first myocardial infarction (MI). Thus, to improve morbidity and mortality associated with CAD, it is important to optimize medical management in patients at risk for having a cardiovascular event. Medical optimization revolves around controlling medical co-morbidities (hypertension, diabetes, obesity and dys-lipidemia) and low dose aspirin therapy [5]. In recent decades, advancements in preventive and therapeutic approaches have significantly enhanced the outlook for individuals with coronary artery disease (CAD) and other cardiovascular conditions. Nevertheless, the risk of these diseases remains elevated, and the progression can only be halted in a limited number of patients through treatments that incorporate aspirin, statins, and β -blockers [6]. Coronary artery bypass graft (CABG) surgery was first performed in the 1960s by Kolesov and Favaloro and quickly became the principal modality for invasive treatment of CAD. A decade later, Gruntzig introduced the less invasive alternative, percutaneous coronary intervention (PCI). These 2 modalities remain the main invasive therapeutic options for coronary revascularization [7]. Coronary artery disease (CAD) generally involves degenerative changes in the intima or inner lining of the larger arteries those supply the heart muscle or myocardium. This results into the formation of fatty plaques and leads to the progressive narrowing (atherosclerosis) of the coronary arteries. With the progress of the disease the coronary artery becomes more narrowed and the capacity of the artery to supply blood to the myocardium is gradually reduced. As a result the portion of the myocardium that is supplied by the narrowed arteries becomes ischemic, meaning it suffers from a deficiency of blood. When blood supply to the part of the myocardium is severely or totally restricted ischemia can lead to a heart attack or myocardial infarction because cardiac muscle cells those are deprived of blood for several minutes are also deprived of oxygen, which leads to irreversible cellular death and necrosis [8]. Over the years scientists have attempted to determine the basic aetiology or cause of coronary artery disease. A series of large epidemiological studies throughout the world have established what is called the risk factor concept. According to this concept hypercholesterolemia, high consumption of cigarettes and hypertension are first order independent risk factors for coronary artery disease. They are attributed with a causal relation to atherosclerosis. A second, less significant risk factor category, includes diabetes mellitus, gout, adiposity, lack of exercise and stress [9-11]. Historically, persistent factors that have been associated with the onset of coronary artery disease (CAD) have levels total high-density included advancing age, and lipoprotein (HDL) cholesterol in the blood, blood pressure, smoking habits, diabetes mellitus, and the presence of left ventricular hypertrophy as indicated on an electrocardiogram [12]. The genetic components of coronary artery disease (CAD) are deemed as significant as environmental factors. Studies involving families and twins, which offer a high degree of precision despite potential biases, have estimated the heritability of CAD to be in the range of 40% to 60%. In the Framingham Offspring Study, the age-specific incidence of CAD increased by >2-fold after adjustment for conventional CAD risk factors in participants with a family history of premature disease. The Swedish Twin registry reported on close to 21,000 subjects followed up for >35 years and calculated the heritability of fatal CAD events to be 0.57 and 0.38, for men and women, respectively. Of note, heritable effects are most manifest in younger individuals. This accords with other data, indicating that the genetic influence is the greatest for early-onset CAD events [13]. Coronary Artery Disease (CAD) and its primary complication, Myocardial Infarction (MI), stand as the top global causes of mortality. In the United States, CAD is presently responsible for one out of every six deaths. It is projected that by 2030, approximately 40.5% of the US population will experience some type of CAD, resulting in an anticipated direct medical expenditure of \$818 billion and a 61% rise in indirect costs attributed to productivity loss [14].

Patient and clinical factors

Ischemic heart disease commonly arises due to atherosclerotic coronary artery disease (CAD). When there are narrowed sections in the epicardial arteries, limiting the flow of blood to the heart, it can create an unequal situation between the heart's oxygen supply and demand. This imbalance frequently presents as angina pectoris, which serves as the first symptom for half of CAD patients and as a preceding symptom for 50% of patients admitted to the hospital with a myocardial infarction (MI) [15]. Clinically, angina is typically located near the sternum, although it may also be noted anywhere between the epigastrium and the mandible or in either arm. The discomfort is usually characterized as a tightness, heaviness, squeezing, or pressure sensation with a duration lasting no longer than 10 min. Possible associated symptoms include shortness of breath, nausea, or diaphoresis. It is usually provoked by exertion, emotional stress, cold weather, or heavy meals, and relieved by rest or sublingual nitroglycerin. Symptoms can be categorized as typical angina, atypical angina, or non-cardiac chest pain based on the number of features they exhibit. Angina can also be subcategorized into stable or unstable forms. Unstable angina should be considered in patients who encounter angina-like symptoms at rest, individuals with previously stable angina experiencing more severe or frequent pain or feeling it at lower levels of activity, and those who have recently developed severe angina within the past two months. Recognition of unstable angina is critical as it implies the possibility of plaque rupture, which is associated with a higher short-term risk of MI and death and should prompt an immediate evaluation. In patients whose symptoms are suggestive of stable angina, clinical risk stratification may be performed using the Canadian Cardiovascular Society Classification System. This classification system is a useful clinical tool in grading the severity of angina and in documenting the patient's functional limitation [16]. In addition to obtaining the chest pain history, assessing the patient's risk factor profile is essential in predicting the likelihood of underlying CAD. Risk factors include hypertension, tobacco use, dyslipidemia, diabetes mellitus, and family history of premature CAD (< 55 years for males and < 65 years for females). Additional factors associated with an increased risk of CAD include obesity, physical inactivity, chronic renal disease, peripheral artery disease, and older age [17 18].

Cardiovascular disease has attained the first position in the statistics of morbidity and mortality in all highly industrialized countries (48%) and in developing countries it accounts for about 16% of total mortality. Maximum number of cardiovascular deaths are due to coronary heart disease (CHD), often termed as coronary artery disease (CAD) or ischemic heart disease (IHD) [19]. As humans age, their coronary arteries which supply the heart muscle (myocardium) itself become progressively narrower as a result of the formation of fatty plaque along the inner wall of the artery. This process of progressive narrowing of the arteries in general is referred to as "Atherosclerosis", and when the coronary arteries are involved, it is termed coronary artery disease (CAD). As the disease progresses and the coronary arteries become more narrowed, the capacity of blood supply to the myocardium is progressively reduced [8]. As the narrowing worsens, the myocardium cannot receive enough blood to meet all of its needs. When this occurs the portion of the heart that is supplied by the narrowed arteries becomes ischemic, meaning it suffers a deficiency of blood. Ischemia of the heart usually causes severe chest pains, referred to as angina pectoris. This is typically first experienced during periods of physical exertion or stress, when the demands on the hearts are greatest. When blood supplied to a portion of the myocardium is severely or totally restricted, ischemia can lead to a heart attack, or myocardial infarction, because cardiac muscle cells that are deprived of blood for several minutes are also deprived of oxygen, which leads to irreversible damage and cellular death (necrosis). This can lead to mild, moderate or severe disability or even death, depending on the location of the infarction and the extent of the damage. According to the WHO definition atherosclerosis is; A variable mix of alterations in the artery wall, characterized by the focal buildup of lipids, intricate carbohydrates, blood and its components, fibrous tissue, and deposits of calcium, linked to modifications in the middle layer (media) [20]. Relative contribution of cardio-vascular death to total mortality in developing and industrial countries and the world, 1980 [20].

The fundamental element of atherosclerosis is the atherosclerotic plaque. Three classic types of lesions are recognized, the fatty streak, the fibrous plaque, and the so called "complicated lesion" [21 22]. The relation between the fatty streak and the fibrous plaque is still a matter of controversy.

It has been suggested that fatty streaks are precursors of fibrous plaques. However, this view is not any longer generally accepted [23]. We now understand that many acute coronary syndromes (ACS) can be triggered by the disruption of plaques, even those that don't cause significant blockages in the arteries. The ruptured plaque serves as a catalyst for blood clot formation, acting as a "solid-state" trigger for thrombosis. Changes in the levels of prothrombotic or antifibrinolytic substances in the circulating blood, referred to as the "fluid phase," can also increase the risk of ACS. Recent findings have highlighted the presence of numerous "high-risk" plaques and widespread inflammation in individuals prone to developing ACS. These discoveries challenge the conventional notion of coronary atherosclerosis as a condition limited to specific segments or localized areas. Consequently, the treatment of ACS should involve two interconnected phases: first, addressing the problematic lesion responsible for the current event, and second, working toward the swift "stabilization" of other plaques that might lead to recurrent incidents [24].

Pathophysiology of Coronary artery Disease

The hallmark of the pathophysiology of CAD is the development of atherosclerotic plaque. Plaque is a build-up of fatty material that narrows the vessel lumen and impedes the blood flow. The first step in the process is the formation of a "fatty streak." Fatty streak is formed by subendothelial deposition of lipid-laden macrophages, also called foam cells. When a vascular insult occurs, the intima layer breaks, and monocytes migrate into the subendothelial space where they become macrophages. These macrophages take up oxidized low-density lipoprotein (LDL) particles, and foam cells are formed. T cells get activated, which releases cytokines only to aid in the pathologic process. Growth factors released activate smooth muscles, which also take up oxidized LDL particles and collagen and deposit along with activated macrophages and increase the population of foam cells. This process leads to the formation of subendothelial plague [25]. In the presence of a lipoprotein abnormality lipids begin to accumulate on the endothelial cells lining the endothelium. As the lipid particles accumulate they migrate into the intima and coalesce into the proteoglycan of the extracellular matrix (ECM) were they get "trapped". Lipoproteins that accumulate in the ECM are susceptible to oxidative stress. The oxidized lipoproteins produce free radicals that causes localize cellular injury and dysfunction. This stimulates the release of growth factors, cytokines, and chemokines by endothelial cells, and hinders the vessels vasodilator activity [26]. With the accumulation of foam cells and the proliferation of intima smooth muscle cells and extracellular matrix the earliest grossly visible lesion sign of an atherosclerotic lesion develops called a fatty streak. Over time the lesions further mature into an atheroma and will progressively grow with the development of a lipid core. During the lesion maturation process the smooth muscle cells synthesizing extracellular matrix (notably collagen) in an attempt to stabilize the atherosclerotic plaques. Many times this is unsuccessful resulting in an unstable plaque that is prone to rupture [27]. When a plaque narrows a coronary artery to the extent of more than 50% in diameter (or more than a 75% reduction in cross-sectional area), it can result in angina when blood flow through the artery is insufficient during physical exertion. Acute coronary events typically occur when a thrombus forms after a plaque is disrupted. The injury to the inner lining (intimal injury) leads to the exposure of the thrombogenic material or lipid deposit, prompting the formation of a blood clot. In cases of acute myocardial infarction, the artery blockage is more extensive compared to unstable angina, where the occlusion of the artery is usually partial. Additionally, there is a possibility of tiny infarctions caused by the downstream movement of the blood clot (thrombus), which can result in microinfarct [28].

Risk Factors Associated With CAD

The idea of "risk factors" in coronary heart disease (CHD) was introduced by the Framingham Heart Study (FHS) when it published its results in 1957. The FHS established the epidemiological connections between cigarette smoking, blood pressure, and cholesterol levels and the occurrence of coronary artery disease (CAD). These discoveries were groundbreaking as they played a pivotal role in reshaping medical practice [29-30]. The primary risk factors associated with coronary artery disease (CAD) encompass less-than-ideal dietary habits, smoking, elevated body mass index (BMI),

hypertension, elevated fasting plasma glucose levels, along with a lack of physical activity and exposure to stress [31].

Blood Pressure

Hypertension is typically associated with increased rates of CAD in both young and elderly adults who have participated in epidemiologic studies. Detailed analyses of data from the Framingham study have shown that each increment of blood pressure increases the risk of CAD as well as other forms of heart and vascular disease. In addition, higher systolic and diastolic blood pressures, even when within the "normotensive range," are associated with greater risk of CAD, and the association of blood pressure with later CAD is greater with the systolic than with the diastolic determinations. For these reasons, CAD prediction formulas tend not to use hypertension or diastolic blood pressure as the risk factor. Systolic and diastolic measurements are highly correlated and not independent of each other, and the systolic value alone is the preferred risk factor to use [32].

Smoking

Smoking is the main factor in the development of CAD, determining the rate of its progression [33]. Nicotine and carbon monoxide contents of cigarettes have damaging effects on arteries, cause loss of their compliance, accumulation of high level of non-esterified fatty acids in the circulating blood and can induce cellular injury, elicit an inflammatory response and set up a background of the atherosclerotic plaque formation [34]. The toxins in tobacco smoke lower high-density lipoproteins (HDL), while raising the level of high-density lipoproteins (LDL)-cholesterol in patients' blood. Smoking is associated with a two-to six-fold increase in the risk for myocardial infarction and a three-fold increase in the risk for incident angina in males. There is a clear relationship between CAD and the duration (years) and intensity of smoking, the degree of inhalation, and the age of initiation of smoking [35].

Diabetes Mellitus

One of the risk factors of CAD is diabetes (especially type 2 diabetes mellitus). Diabetes mellitus and metabolic syndrome increase the risk of cardiovascular mortality by 2 to 4 times and can decrease life expectancy by 5 to 10 years. Individuals with diabetes face a 2 to 4 times higher chance of developing coronary artery disease (CAD) [36].

Obesity

Obesity represents a standalone risk factor for coronary artery disease (CAD) and additionally raises the likelihood of acquiring other risk factors for CAD, such as hypertension, high cholesterol levels, and diabetes mellitus [37-39]. One recent study indicated that obese patients were twice as likely to have coronary heart disease [40].

Hyperlipidemia

Hyperlipidemia is considered the second most common risk factor for ischemic heart disease. According to the World Health Organization, raised cholesterol caused an estimated 2.6 million deaths [41]. Elevated triglycerides have also been implicated in coronary artery disease; however, the relationship is more complicated as the association becomes attenuated when adjusted for other risk factors such as central adiposity, insulin resistance, and poor diet. Thus, it is challenging to determine an isolated effect of triglycerides on coronary artery disease [42].

Psychosocial Stress

Psychosocial stress involving job strain has been found to be a risk factor of CAD. Job strain has been defined as the combination of high job demands and low control at work. In a case-control

study of INTERHEART, job strain was reported to be associated with a higher risk of MI in men than in women. It has also been suggested by some studies that the effect of job strain in younger employees was higher than in older employees [6].

Homocystinuria

Elevated plasma total homocysteine has also recently been shown to be an independent risk factor for peripheral and coronary atherosclerosis. Individuals with homocystinuria are at increased risk for vascular disease, and conversely, patients with atherosclerosis frequently have elevated levels of plasma total homocysteine [43].

Life style And Diet

Quality of food consumed physical activity, is a key determinant of energy expenditure and thus is fundamental to energy balance and weight control. Physical activity improves endothelial function, which enhances vasodilatation and vasomotor function in the blood vessels [44], contributes to glycaemic control, improved blood pressure, lipid profile and insulin sensitivity [45].

Symptoms of CAD

The predominant symptom is chest pain or discomfort that typically arises during physical activity, after meals, or at specific predictable times. This condition is known as stable angina and is linked to the narrowing of the heart's arteries. Angina symptoms can also involve sensations like chest tightness, heaviness, pressure, numbness, fullness, or a squeezing feeling. When angina changes in its intensity, nature, or frequency, it is classified as unstable angina. Unstable angina can be a precursor to a heart attack. In adults who visit the emergency department with unexplained chest pain, approximately 30% of cases are attributed to coronary artery disease [47]. Angina, shortness of breath, sweating, nausea or vomiting, and lightheadedness are signs of a heart attack, or myocardial infarction [46].

Diagnosis of CAD

CAD in HF may be present without a history of angina. CAD may be detected by coronary angiography or noninvasive imaging. Angiographic findings of CAD must be interpreted within the clinical context of patients and may not be the sole contributor to LV dysfunction [48]. In the seminal Johns Hopkins study of 1230 patients with initially unexplained cardiomyopathy, CAD was identified in 7% of cases by coronary angiography [49]. Because the presence of CAD may have important implications for treatment, the Heart Failure Society of America's guidelines [50]. Recommend invasive or noninvasive testing in all patients at a high risk for CAD to assess for ischemia and or severity of CAD.

Coronary Angiography

CAD may be detected via coronary angiography when ischemia is suspected and coronary anatomy is unknown or when angina is not present with a known history of CAD, as indicated by the 2013 guidelines from the American College of Cardiology (ACC) [51]. coronary angiography should only be performed in those patients in whom revascularization is a potentially feasible option. It is reasonable to perform noninvasive stress testing (either exercise or pharmacologic) often with imaging to detect myocardial ischemia and viability in patients with de novo HF and known coronary disease with no angina (class IIa, LOE C) [51]. Current guidelines also mention the utility of magnetic resonance imaging to assess for the burden of scar as measured by the presence of late gadolinium enhancement or infiltrative processes. Although multi detector row or electron beam computed tomography (CT) for the detection of calcium/calcification [52] and cardiac magnetic resonance angiography [53] have been used to diagnose CAD, scintigraphic and echocardiographic modalities have typically been the ischemia tests most routinely used [54].

Stress Tests

The treadmill exercise stress test (TMET) or exercise stress test can be done to evaluate the heart during exercise. ECG and blood pressure (BP) monitoring are done while a patient exercises. Evidence of CAD may only be present in situations when the heart is being challenged. A patient may develop angina during the test, or there may be changes in ECG or BP suggesting cardiac ischemia. Patients may develop exertional hypotension or hypertension. The decrease in BP during exertion to values lower than the resting systolic pressure is called exertional hypotension. The finding often indicates severe heart failure or multivessel CAD [55]. Exertional hypertension may also occur. This condition is defined as a peak systolic pressure greater than 210 mm Hg in men and greater than 190 mm Hg in women. A normotensive patient with a hypertensive response is more likely to develop hypertension [56].

Myocardial Perfusion Imaging

Thallium and sestamibi scans are tests that can show how well blood is flowing to various portions of the heart. These tests are typically done with a stress test. The radioactive substance is injected through a vein, and a special camera takes images. Normal myocardium takes up more thallium/sestamibi than myocardium being supplied by a blocked or partially blocked coronary artery. Ideally, these tests are done with a patient actively exercising. However, if the patient is unable to exercise, pharmacologic agents can be used such as dipyridamole, dobutamine, or adenosine (Adenoscan). Adenosine is preferred because of a very short half-life, rapid reversal, and more predictable vasodilation [57].

Cardiac Catheterization

A catheter is inserted into the blood vessels through the groin, arm, or neck. The catheter is then advanced to the heart. A dye is injected through the heart while a series of radiographs are obtained. The catheter can be used in multiple therapies such as angioplasty, stenting, or valvuloplasty [58-63].

Treatment of CAD

Management of CAD has 2 main goals: to reduce symptoms and ischemia and to prevent MI and death. These are modulated by different mechanisms: symptoms and ischemia, by the insufficient oxygen supply/demand ratio (usually due to coronary atherosclerosis); and MI and death, usually by unstable coronary artery plaque rupture [63-70]. Effective medical care is crucial for all individuals with coronary artery disease (CAD). The initial phase involves recognizing and addressing any concurrent conditions that might trigger angina. These conditions either escalate myocardial oxygen demand (like tachycardia and hypertension) or reduce the oxygen supply to the heart muscle (such as heart failure, lung problems, or anemia). [70-75]. The second step is to manage CAD risk factors as well as to prevent MI with lifestyle changes and pharmacological treatment. In 2006, despite therapeutic advances, 9.8 million patients had angina in the United States and thus the beneficial effect of aggressive secondary prevention cannot be overemphasized. The recognition of the importance of optimal medical therapy (OMT) is transforming patient management, both in patients undergoing coronary revascularization and in patients treated conservatively. Optimal medical therapy remains the cornerstone of management in all patients with CAD because it is logical, relatively inexpensive, and undeniably effective in improving long-term outcomes. The challenge is to implement these measures in all patients with CAD [75-85].

Coronary Artery Disease (CAD) is a prevalent and severe cardiovascular condition characterized by the constriction and hardening of the coronary arteries, which supply the heart muscle with oxygenrich blood. The management of CAD encompasses a comprehensive strategy aimed at mitigating symptoms, enhancing cardiac performance, and decreasing the likelihood of complications, including heart attacks and heart failure. The treatment approach is individualized, considering

factors such as the patient's specific condition, disease severity, risk factors, and overall well-being [85-90].

Adopting Lifestyle Adjustments: Central to CAD treatment are modifications in lifestyle that seek to diminish risk factors, foster heart health, and decelerate disease progression [90-92]. These alterations encompass:

Promoting a Heart-Healthy Diet: Embracing a diet low in saturated and trans fats, cholesterol, and sodium is crucial. Prioritizing nutrient-dense foods such as fruits, vegetables, whole grains, lean proteins, and beneficial fats found in sources like olive oil and nuts assists in regulating weight, blood pressure, and cholesterol levels [92-94].

Engaging in Regular Physical Activity: Participating in consistent aerobic exercises, such as brisk walking, swimming, or cycling, contributes to enhanced cardiovascular fitness, reduced blood pressure, and effective weight management [94-97].

Smoking Cessation: Quitting smoking is imperative, as smoking compromises blood vessels, diminishes the heart's oxygen supply, and accelerates the advancement of CAD [97-99].

Managing Stress: Chronic stress can exacerbate CAD progression. Employing relaxation techniques like meditation, yoga, deep breathing, and relaxation exercises helps manage stress levels effectively [99-104].

Weight Control: Maintaining an optimal weight is pivotal in lessening strain on the heart and enhancing overall cardiovascular health [104-107].

Employing Medications: Pharmaceutical interventions play a pivotal role in CAD management by regulating risk factors, alleviating symptoms, and augmenting cardiac function [108]. Frequently prescribed medications encompass:

Aspirin and Antiplatelet Medications: These agents diminish the risk of blood clot formation, a crucial element in preventing heart attacks [109].

Cholesterol-Lowering Drugs (Statins): Statins serve to lower LDL cholesterol levels, thereby mitigating the accumulation of plaque in arteries and diminishing the likelihood of cardiovascular events [110].

Beta-Blockers: These drugs decelerate heart rate and lower blood pressure, thereby lessening the heart's workload and oxygen requirements [111-113].

ACE Inhibitors or ARBs: These medications facilitate blood vessel relaxation, reduce blood pressure, and enhance heart function, particularly in patients with heart failure [113-115].

Nitroglycerin: This medication aids in alleviating chest pain (angina) by widening and relaxing blood vessels, thus enhancing blood flow to the heart [115].

Calcium Channel Blockers: These agents induce blood vessel relaxation and reduce the heart's exertion, often prescribed to manage angina and hypertension [116].

Exploring Invasive Procedures: Individuals with more advanced CAD may necessitate invasive procedures to augment blood flow to the heart [117]. Such interventions encompass:

Percutaneous Coronary Intervention (PCI): This minimally invasive procedure entails inserting a catheter with a balloon into a constricted coronary artery. Inflating the balloon compresses the plaque, widening the artery, often accompanied by the placement of a stent, a mesh tube, to sustain

artery openness [118].

Coronary Artery Bypass Grafting (CABG): In extensive CAD cases, CABG surgery may be recommended. This involves using blood vessels from other body parts to create bypasses around obstructed coronary arteries, thereby enhancing blood flow to the heart [118].

Participating in Cardiac Rehabilitation: Structured cardiac rehabilitation programs aid post-heart event or procedure recovery. These programs comprise supervised exercise, education on heart-healthy lifestyles, and emotional support. Cardiac rehab assists individuals in regaining strength, improving fitness levels, managing risk factors, and enhancing overall well-being [118].

Managing Underlying Conditions: Conditions like hypertension, diabetes, and obesity often coexist with CAD. Addressing these conditions is pivotal for effective CAD management. Regulating blood pressure, managing blood sugar levels, and reducing weight are fundamental components of a comprehensive treatment regimen [119].

Continual Monitoring and Follow-Up: Given that CAD is a chronic condition, continuous monitoring and management are imperative. Regular consultations with healthcare providers are essential for evaluating treatment efficacy, making necessary medication adjustments, and implementing lifestyle modifications as required [120].

The management of Coronary Artery Disease necessitates a multifaceted approach encompassing lifestyle adjustments, medication utilization, and potentially invasive procedures to mitigate symptoms, amplify cardiac function, and diminish the risk of complications. By addressing risk factors and adopting heart-healthy habits, individuals can actively engage in their CAD management and overall cardiovascular well-being. Close collaboration with healthcare professionals is essential for devising a customized treatment strategy aligned with individual needs and circumstances [121].

Conclusion

Coronary Artery Disease (CAD) stands as a formidable challenge in the realm of cardiovascular health, demanding comprehensive understanding, vigilant management, and proactive prevention. Its impact on global morbidity and mortality underscores the urgency of effective strategies to combat its progression and devastating consequences. Through a journey spanning from the intricate mechanisms of plaque formation to the diverse array of treatment modalities, this overview has illuminated the intricate nature of CAD. The intertwining factors of genetics, lifestyle, and underlying conditions have been unraveled, emphasizing the importance of a holistic approach in its management. The treatment landscape of CAD is a tapestry woven with lifestyle modifications, pharmacological interventions, and cutting-edge procedures. Embracing hearthealthy habits, such as a balanced diet, regular exercise, stress management, and cessation of smoking, forms the foundation for preventing and mitigating CAD. Medications, including antiplatelets, statins, beta-blockers, and vasodilators, form an arsenal against risk factors and symptomatic manifestations. Invasive interventions like percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) provide avenues for restoring blood flow and revitalizing heart health. However, the journey does not conclude with the initiation of treatment. Regular medical follow-ups, continued lifestyle adjustments, and sustained commitment are crucial elements in the ongoing battle against CAD. Additionally, advancements in diagnostic techniques and therapeutic innovations offer a beacon of hope, promising improved outcomes and a brighter future for individuals grappling with this ailment. As we navigate the terrain of CAD, it is evident that education, awareness, and collaboration between healthcare providers and patients are paramount. By deciphering the complexities of CAD and embracing a comprehensive approach that addresses risk factors, promotes heart health, and harnesses medical advancements, we can forge a path towards minimizing its impact and enhancing the quality of life for those affected. In essence, the journey through the landscape of CAD is an evolving narrative, marked by resilience,

scientific progress, and unwavering determination. By embarking on this journey together, we can empower individuals, families, and communities to conquer CAD and embark on a trajectory of heart health and vitality.

References

- 1. P.A.J.C.J.o.t.A.S.o.N. McCullough, Coronary artery disease, 2(3) (2007) 611-616.
- 2. M. Maqbool, F. Bekele, G.J.B.C.T. Fekadu, Therapy, Treatment strategies against triplenegative breast cancer: an updated review, (2022) 15-24.
- 3. P. Libby, P.J.C. Theroux, Pathophysiology of coronary artery disease, 111(25) (2005) 3481-3488.
- 4. M. Zehravi, M. Maqbool, I.J.I.j.o.a.m. Ara, health, Polycystic ovary syndrome and infertility: an update, 34(2) (2021) 1-9.
- 5. V. Fuster, L. Badimon, J.J. Badimon, J.H.J.N.E.j.o.m. Chesebro, The pathogenesis of coronary artery disease and the acute coronary syndromes, 326(4) (1992) 242-250.
- 6. R. Maqbool, M. Maqbool, M. Zehravi, I.J.I.j.o.a.m. Ara, health, Menstrual distress in females of reproductive age: a literature review, 34(2) (2021) 11-17.
- 7. N.R. Hertzer, E.G. Beven, J.R. Young, P.J. O'Hara, W. Ruschhaupt 3rd, R.A. Graor, V.G. Dewolfe, L.C.J.A.o.s. Maljovec, Coronary artery disease in peripheral vascular patients. A classification of 1000 coronary angiograms and results of surgical management, 199(2) (1984) 223.
- 8. M. Zehravi, M. Maqbool, I.J.I.J.o.A.M. Ara, Health, Correlation between obesity, gestational diabetes mellitus, and pregnancy outcomes: an overview, 33(6) (2021) 339-345.
- 9. C. Shao, J. Wang, J. Tian, Y.-d.J.C.A.D.T. Tang, D. Discovery, Coronary artery disease: from mechanism to clinical practice, (2020) 1-36.
- 10. U. Ralapanawa, R.J.J.o.e. Sivakanesan, g. health, Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review, 11(2) (2021) 169.
- 11. M. Zehravi, M. Maqbool, I.J.I.J.o.A.M. Ara, Health, Depression and anxiety in women with polycystic ovarian syndrome: a literature survey, 33(6) (2021) 367-373.
- 12. R. Bauersachs, U. Zeymer, J.-B. Brière, C. Marre, K. Bowrin, M.J.C.t. Huelsebeck, Burden of coronary artery disease and peripheral artery disease: a literature review, 2019 (2019).
- 13. M. Abdar, W. Książek, U.R. Acharya, R.-S. Tan, V. Makarenkov, P.J.C.m. Pławiak, p.i. biomedicine, A new machine learning technique for an accurate diagnosis of coronary artery disease, 179 (2019) 104992.
- 14. R.J. Lihite, M. Lahkar, S. Das, D. Hazarika, M. Kotni, M. Maqbool, S.J.A.j.o.m. Phukan, A study on adverse drug reactions in a tertiary care hospital of Northeast India, 53(2) (2017) 151-156.
- 15. A. Barham, R. Ibraheem, S.e.H.J.B.C.D. Zyoud, Cardiac self-efficacy and quality of life in patients with coronary heart disease: a cross-sectional study from Palestine, 19(1) (2019) 1-12.
- 16. M. Zehravi, M. Maqbool, I.J.O.H. Ara, Healthy lifestyle and dietary approaches to treating polycystic ovary syndrome: a review, 3(1) (2022) 60-65.
- 17. M. Zehravi, M. Maqbool, I.J.I.J.o.A.M. Ara, Health, Teenage menstrual dysfunction: an overview, 35(1) (2022) 15-19.
- 18. Y. Higashi, S. Gautam, P. Delafontaine, S.J.G.H. Sukhanov, I. Research, IGF-1 and cardiovascular disease, 45 (2019) 6-16.
- 19. D. Ornish, S.E. Brown, J. Billings, L. Scherwitz, W.T. Armstrong, T.A. Ports, S.M. McLanahan, R.L. Kirkeeide, K. Gould, R.J.T.L. Brand, Can lifestyle changes reverse coronary heart disease?: The Lifestyle Heart Trial, 336(8708) (1990) 129-133.
- 20. J.C. Rutledge, D.A. Hyson, D. Garduno, D.A. Cort, L. Paumer, C.T.J.J.o.C.R. Kappagoda, Prevention, Lifestyle modification program in management of patients with coronary artery disease: the clinical experience in a tertiary care hospital, 19(4) (1999) 226-234.
- 21. A. Majeed, R. Bashir, S. Farooq, M.J.J.o.D.D. Maqbool, Therapeutics, Preparation, characterization and applications of nanoemulsions: An insight, 9(2) (2019) 520-527.
- 22. S. Khan, M. Cleanthis, J. Smout, M. Flather, G.J.E.J.o.V. Stansby, E. Surgery, Life-style

- modification in peripheral arterial disease, 29(1) (2005) 2-9.
- 23. M. Mohd, M. Maqbool, M.A. Dar, I.J.J.o.D.D. Mushtaq, Therapeutics, Polycystic ovary syndrome, a modern epidemic: an overview, 9(3) (2019) 641-644.
- 24. E.B. Winzer, F. Woitek, A.J.J.o.t.A.H.A. Linke, Physical activity in the prevention and treatment of coronary artery disease, 7(4) (2018) e007725.
- 25. M. Maqbool, I. Gani, M.A.J.A.J.o.P.R. Dar, Development, Anti-diabetic effects of some medicinal plants in experimental animals: a review, 7(1) (2019) 66-69.
- 26. J. Claes, R. Buys, W. Budts, N. Smart, V.A.J.E.j.o.p.c. Cornelissen, Longer-term effects of home-based exercise interventions on exercise capacity and physical activity in coronary artery disease patients: A systematic review and meta-analysis, 24(3) (2017) 244-256.
- 27. I. Ara, M. Maqbool, I.J.I.J.o.C.R.i.P. Gani, Pharmacology, Reproductive Health of Women: implications and attributes, (2022) 8-18.
- 28. I. Goldenberg, M. Jonas, A. Tenenbaum, V. Boyko, S. Matetzky, A. Shotan, S. Behar, H. Reicher-Reiss, B.I.P.S.G.J.A.o.i. medicine, Current smoking, smoking cessation, and the risk of sudden cardiac death in patients with coronary artery disease, 163(19) (2003) 2301-2305.
- 29. R. Bashir, M. Maqbool, I. Ara, M.J.C. Zehravi, An In sight into Novel Drug Delivery System: In Situ Gels, 11(1) (2021) 6.1-6.7.
- 30. J. Ludvig, B. Miner, M.J.J.A.H.J. Eisenberg, Smoking cessation in patients with coronary artery disease, 149(4) (2005) 565-572.
- 31. M. Maqbool, G. Fekadu, D. Dugassa, F. Bekele, E. Turi, D.J.A.o.N. Simegnew, The pattern of substance abuse in the psychiatry department of a tertiary care of Srinagar hospital, Jammu and Kashmir, India, 7(4) (2020).
- 32. P.A. Ades, P.D.J.P.i.c.d. Savage, Potential benefits of weight loss in coronary heart disease, 56(4) (2014) 448-456.
- 33. G. Fekadu, F. Bekele, K. Bekele, S. Hanbisa, G. Belay, M.J.C.T. Maqbool, Drug use evaluation of beta-blockers in medical wards of Nedjo general hospital, Western Ethiopia, 2020 (2020).
- 34. Q.R. Pack, J.P. Rodriguez-Escudero, R.J. Thomas, P.A. Ades, C.P. West, V.K. Somers, F. Lopez-Jimenez, The prognostic importance of weight loss in coronary artery disease: a systematic review and meta-analysis, Mayo Clinic Proceedings, Elsevier, 2014, pp. 1368-1377.
- 35. I. Ara, M. Zehravi, M. Maqbool, I.J.J.o.P.R. Gani, R.S.J.-D.d. org/10.47363/JPRSR/, A review of recent developments and future challenges in the implementation of universal health coverage policy framework in some countries, 127 (2022).
- 36. A. Michalsen, P. Grossman, N. Lehmann, N.T. Knoblauch, A. Paul, S. Moebus, T. Budde, G.J.J.P. Dobos, psychosomatics, Psychological and quality-of-life outcomes from a comprehensive stress reduction and lifestyle program in patients with coronary artery disease: results of a randomized trial, 74(6) (2005) 344-352.
- 37. M. Maqbool, D. Dugassa, G.J.A.o.N. Fekadu, Adverse drug reactions of antiepileptic drugs in the neurology department of a tertiary care hospital, Srinagar, Jammu & Kashmir, India, 8(2) (2021).
- 38. M.J. Mathews, L. Liebenberg, E.H.J.N.j. Mathews, The mechanism by which moderate alcohol consumption influences coronary heart disease, 14 (2015) 1-12.
- 39. M. Maqbool, M. Zehravi, R. Maqbool, I.J.C. Ara, An overview about treatment of gestational diabetes mellitus: A short communication, 11(3) (2021) 12.1-12.5.
- 40. C. Matsumoto, M.D. Miedema, P. Ofman, J.M. Gaziano, H.D.J.J.o.c.r. Sesso, prevention, An expanding knowledge of the mechanisms and effects of alcohol consumption on cardiovascular disease, 34(3) (2014) 159-171.
- 41. M. Zehravi, M. Maqbool, I.J.I.J.o.A.M. Ara, Health, Unfolding the mystery of premenstrual syndrome (PMS): an overview, 35(1) (2022) 9-13.
- 42. T.M. Maddox, P.M.J.C.o.i.c. Ho, Medication adherence and the patient with coronary artery disease: challenges for the practitioner, 24(5) (2009) 468-472.
- 43. I. Ara, M. Maqbool, B. Bukhari, N. Ara, T.A.J.I.J.o.R.i.P.S. Hajam, Technology, Present status, standardization and safety issues with herbal drugs, 1(3) (2020) 95-101.
- 44. S. Baroletti, H.J.C. Dell'Orfano, Medication adherence in cardiovascular disease, 121(12)

- (2010) 1455-1458.
- 45. I. Ara, M. Maqbool, I.J.I.J.o.C.R.i.P. Gani, Pharmacology, Neuroprotective Activity of Herbal Medicinal Products: A Review, (2022) 1-10.
- 46. C.B. Mendez, N.C. Salum, C. Junkes, L.N. Amante, C.M.L.J.R.l.-a.d.e. Mendez, Mobile educational follow-up application for patients with peripheral arterial disease, 27 (2019).
- 47. M. Maqbool, S. Rasool, M.A. Dar, R. Bashir, M.J.P. Khan, Hepatotoxicity and Hepatoprotective agents: A Mini review, 7(9) (2019) 34-40.
- 48. D.T. Zhou, O. Oektedalen, S. Shawarira-Bote, B.J.H.A.-R. Stray-Pedersen, P. Care, Changes in coronary heart disease risk profiles of HIV patients in Zimbabwe over 9 months: a follow-up study, (2016) 165-174.
- 49. M. Maqbool, A.M. Dar, S. Rasool, M.J.J.o.A.P.S. Khan, Research, Curious case of drug resistant malaria and artemisinin compounds in the modern era, (2019) 1-4.
- 50. M. Maqbool, M.J.I.P.M. Zehravi, Neuromodulation, Neuroprotective role of polyphenols in treatment of neurological disorders: A review, 1(1) (2021).
- 51. G.J. Hankey, P.E. Norman, J.W.J.J. Eikelboom, Medical treatment of peripheral arterial disease, 295(5) (2006) 547-553.
- 52. R.A. Rayan, I. Zafar, H. Rajab, M.A.M. Zubair, M. Maqbool, S.J.M.L.A.f.S. Hussain, I. Processing, Impact of IoT in Biomedical Applications Using Machine and Deep Learning, (2022) 339-360.
- 53. I. Ara, M. Maqbool, G. Fekadu, T.A. Hajam, M.A.J.J.o.A.P.S. Dar, Research, Pharmaceutical significance of Nigella sativa L., a wonder herb, 3(4) (2020) 04-13.
- 54. B.D.S.G.J.N.E.J.o. Medicine, A randomized trial of therapies for type 2 diabetes and coronary artery disease, 360(24) (2009) 2503-2515.
- 55. R. Maqbool, M. Maqbool, M. Zehravi, I.J.I.J.o.A.M. Ara, Health, Acute neurological conditions during pregnancy and their management: a review, 33(6) (2021) 357-366.
- 56. G.C. Fonarow, A. Gawlinski, S. Moughrabi, J.H.J.T.A.j.o.c. Tillisch, Improved treatment of coronary heart disease by implementation of a Cardiac Hospitalization Atherosclerosis Management Program (CHAMP), 87(7) (2001) 819-822.
- 57. M. Maqbool, M. Zehravi, R. Maqbool, I.J.C. Ara, Study of adverse drug reactions in pulmonary medicine department of a Tertiary care hospital, Srinagar, Jammu & Kashmir, India, 11(2) (2021) 8.1-8.5.
- 58. H. Tran, S.S.J.J. Anand, Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease, 292(15) (2004) 1867-1874.
- 59. M. Zehravi, R. Maqbool, M. Maqbool, I.J.J.o.P.R.I. Ara, To Identify Patterns of Drug Usage among Patients Who Seek Care in Psychiatry Outpatient Department of a Tertiary Care Hospital in Srinagar, Jammu and Kashmir, India, 33(31A) (2021) 135-140.
- 60. N. Clappers, M. Brouwer, F.J.H. Verheugt, Antiplatelet treatment for coronary heart disease, 93(2) (2007) 258-265.
- 61. M.J.J.o.A.P.S. Maqbool, Research, Evaluation of drug utilization pattern in the pediatric department of a Tertiary Care Hospital in Srinagar, Jammu & Kashmir, India, (2019) 6-9.
- 62. U. Rauch, J. Osende, J. Chesebro, V. Fuster, D. Vorchheimer, K. Harris, P. Harris, D. Sandler, J. Fallon, S.J.A. Jayaraman, Statins and cardiovascular diseases: the multiple effects of lipid-lowering therapy by statins, 153(1) (2000) 181-189.
- 63. C.G. Mihos, A.M. Pineda, O.J.P.r. Santana, Cardiovascular effects of statins, beyond lipid-lowering properties, 88 (2014) 12-19.
- 64. D. Tousoulis, M. Charakida, E. Stefanadi, G. Siasos, G. Latsios, C.J.I.j.o.c. Stefanadis, Statins in heart failure. Beyond the lipid lowering effect, 115(2) (2007) 144-150.
- 65. M. Maqbool, I.J.J.o.P.P. Gani, C. Medicine, Utilization of statins in reducing comorbidities of diabetes mellitus: A systematic review, 4(4) (2018).
- 66. S. Paravastu, D. Mendonca, A.J.E.j.o.v. Da Silva, e. surgery, Beta blockers for peripheral arterial disease, 38(1) (2009) 66-70.
- 67. I. Ara, M. Maqbool, I.J.I.J.o.C.R.i.P. Gani, Pharmacology, Specificity and Personalized medicine: a novel approach to Cancer management, (2022) 11-20.
- 68. M. Chonchol, M. Benderly, U.J.N.D.T. Goldbourt, Beta-blockers for coronary heart disease in chronic kidney disease, 23(7) (2008) 2274-2279.

- 69. D.P. Leong, J.J. McMurray, P.G. Joseph, S.J.J.o.t.A.C.o.C. Yusuf, From ACE inhibitors/ARBs to ARNIs in coronary artery disease and heart failure (part 2/5), 74(5) (2019) 683-698.
- 70. E.L. Gillespie, C.M. White, M. Kardas, M. Lindberg, C.I.J.D.c. Coleman, The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes, 28(9) (2005) 2261-2266.
- 71. M.A. Dar, M. Maqbool, I. Gani, I.J.I.J.o.C.R.i.P. Ara, Pharmacology, Menstruation hygiene and related issues in adolescent girls: A brief commentary, (2023) 1-5.
- 72. V. Hoang, M. Alam, D. Addison, F. Macedo, S. Virani, Y.J.C.d. Birnbaum, therapy, Efficacy of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers in coronary artery disease without heart failure in the modern statin era: a meta-analysis of randomized-controlled trials, 30 (2016) 189-198.
- 73. M. Maqbool, M.J.P. Khan, Hypertension and Pregnancy: an important issue, 7(8) (2019) 71-78.
- 74. R. GORLIN, N. BRACHFELD, C. MACLEOD, P.J.C. BOPP, Effect of nitroglycerin on the coronary circulation in patients with coronary artery disease or increased left ventricular work, 19(5) (1959) 705-718.
- 75. I. Ara, M. Maqbool, M. Zehravi, I.J.A.J.C.B. Gani, Herbs Boosting Immunity in Covid-19: An Overview, 3(3) (2020) 289-94.
- 76. Z.H. Sawan, H.M. Soliman, A.E.A. Mostafa, R.A.J.T.E.J.o.H.M. Kamel, A Review on Nitroglycerin: Present and Future, 91(1) (2023) 4972-4974.
- 77. M. Zehravi, M. Maqbool, I.J.T.I.J.o.N. Ara, Dietetics, An overview about safety surveillance of adverse drug reactions and pharmacovigilance in India, (2021) 408-418.
- 78. E. Sorbets, P.G. Steg, R. Young, N. Danchin, N. Greenlaw, I. Ford, M. Tendera, R. Ferrari, B. Merkely, A.J.E.H.J. Parkhomenko, β-blockers, calcium antagonists, and mortality in stable coronary artery disease: an international cohort study, 40(18) (2019) 1399-1407.
- 79. M. Maqbool, I. Ara, I.J.I.J.o.C.R.i.P. Gani, Pharmacology, The Story of Polycystic Ovarian Syndrome: A Challenging Disorder with Numerous Consequences for Females of Reproductive Age, (2022) 19-31.
- 80. R. Bashir, M. Maqbool, M. Zehravi, I.J.A.J.C.S.B. Ara, Utilization of herbal cosmetics: A brief overview, 3 (2021) 277-288.
- 81. A.K. Malakar, D. Choudhury, B. Halder, P. Paul, A. Uddin, S.J.J.o.c.p. Chakraborty, A review on coronary artery disease, its risk factors, and therapeutics, 234(10) (2019) 16812-16823.
- 82. M. Zehravi, M. Maqbool, I.J.A.J.o.C. Ara, Section B, Curcumin-A promising phytocompound of immense potential, 3 (2021) 271.
- 83. S. Jia, Y. Liu, J.J.C.A.D.T. Yuan, D. Discovery, Evidence in guidelines for treatment of coronary artery disease, (2020) 37-73.
- 84. M.A. Dar, M. Maqbool, I.J.J.o.E.o.M. Ara, D. Sciences, Metformin and Other Sulfonylureas for Glycemic Control in Type 2 Diabetic Patients at a Tertiary Care Hospital in Jammu & Kashmir, (2023) 197-201.
- 85. N. Chen, L. Chen, S. Jiang, Z. Wang, T.J.E. Liu, T. Medicine, Predictive value of P-selectin and endothelin-1 for vascular restenosis after interventional procedures for peripheral artery disease, 17(5) (2019) 3907-3912.
- 86. M.A. Dar, M. Maqbool, I.J.J.o.E.o.M. Ara, D. Sciences, Patterns of Drug Use in Geriatric Patients at a Tertiary Care Teaching Hospital in Jammu and Kashmir, (2023) 182-186.
- 87. R. Loffroy, N. Falvo, C. Galland, L. Fréchier, F. Ledan, M. Midulla, O.J.F.i.C.M. Chevallier, Intravascular ultrasound in the endovascular treatment of patients with peripheral arterial disease: current role and future perspectives, 7 (2020) 551861.
- 88. M.A. Dar, M. Maqbool, I.J.J.o.E.o.M. Ara, D. Sciences, Prescription Pattern of Antibiotics in Pulmonary Ward of a Tertiary Care Hospital, Jammu and Kashmir, (2023) 171-175.
- 89. S.K. Arramraju, R.K. Janapati, E.S. Kumar, G.R.J.I.H.J. Mandala, National interventional council data for the year 2018-India, 72(5) (2020) 351-355.
- 90. M.M. Willie, M.J.A.S.R.P. Maqbool, Access to public health services in South Africa's rural Eastern Cape Province, 1(2) (2023) 35-54.
- 91. F. Darmoch, M.C. Alraies, Y. Al-Khadra, H. Moussa Pacha, D.S. Pinto, E.A.J.J.o.t.A.H.A. Osborn, Intravascular ultrasound imaging-guided versus coronary angiography-guided

- percutaneous coronary intervention: a systematic review and meta-analysis, 9(5) (2020) e013678.
- 92. S. Mumtaz, F. Behram, D.K. Jadoon, M. Maqbool, S.A.A. Shah, U.F.J.N. Khawaja, PATTERN OF DRUG USE IN THE DERMATOLOGY DEPARTMENT OF A HOSPITAL FOR COMMON SKIN CONDITIONS, 20(16) (2022) 2804.
- 93. M. Maqbool, N. Nasir, S.J.I.A.J.O.P.S. Mustafa, Polycystic in ovarian syndrome and its various treatment strategies, 5(9) (2018) 8470-8478.
- 94. S. Völz, B. Redfors, O. Angerås, D. Ioanes, J. Odenstedt, S. Koul, I. Valeljung, C. Dworeck, R. Hofmann, E.J.E.H.J. Hansson, Long-term mortality in patients with ischaemic heart failure revascularized with coronary artery bypass grafting or percutaneous coronary intervention: insights from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR), 42(27) (2021) 2657-2664.
- 95. F. Li, G.-W. Shi, X.-L. Yu, R.-X. Song, J.-Q. Xiao, H.-M. Huang, L.-M. Li, L.-Y. Zhang, C. Gong, G.-J.J.B.C.D. Cai, Safety and efficacy of coronary angiography and percutaneous coronary intervention via distal transradial artery access in the anatomical snuffbox: a single-centre prospective cohort study using a propensity score method, 22(1) (2022) 1-8.
- 96. M. Maqbool, A. Naeem, S.J.I.A.J.o.P.S. Aamer, Diabetes mellitus and its various management strategies in practice, 5(8) (2018) 8163-+.
- 97. J. Aoki, K.J.C.I. Tanabe, Therapeutics, Mechanisms of drug-eluting stent restenosis, 36 (2021) 23-29.
- 98. M. Maqbool, S. Tariq, S.J.I.A.J.o.P.S. Amjad, Prescribing practices in pediatrics and drug utilization studies promoting pediatric health, 5(8) (2018) 8070-8076.
- 99. S. Kuramitsu, S. Sonoda, K. Ando, H. Otake, M. Natsuaki, R. Anai, Y. Honda, K. Kadota, Y. Kobayashi, T.J.C.i. Kimura, therapeutics, Drug-eluting stent thrombosis: current and future perspectives, 36 (2021) 158-168.
- 100. M.V. Madhavan, J.P. Howard, A. Naqvi, O. Ben-Yehuda, B. Redfors, M. Prasad, B. Shahim, M.B. Leon, S. Bangalore, G.W.J.E.H.J. Stone, Long-term follow-up after ultrathin vs. conventional 2nd-generation drug-eluting stents: a systematic review and meta-analysis of randomized controlled trials, 42(27) (2021) 2643-2654.
- 101. M. Maqbool, S. Javed, A.A.J.I.A.J.O.P.S. Bajwa, Assessment OF pain management IN postoperative cases using different scales and guestionnaires, 6(1) (2019) 983-987.
- 102. H. Jinnouchi, S. Torii, A. Sakamoto, F.D. Kolodgie, R. Virmani, A.V.J.N.R.C. Finn, Fully bioresorbable vascular scaffolds: lessons learned and future directions, 16(5) (2019) 286-304.
- 103. S.-W. Baek, D.-S. Kim, D.H. Song, H.B. Kim, S. Lee, J.H. Kim, J.-K. Lee, Y.J. Hong, C.G. Park, D.K.J.B.R. Han, Reduced restenosis and enhanced re-endothelialization of functional biodegradable vascular scaffolds by everolimus and magnesium hydroxide, 26(1) (2022) 1-17.
- 104. M. Maqbool, W. Shabbir, S.J.I.A.J.O.P.S. Aamir, Adverse events of blood transfusion and blood safety in clinical practice, 5(8) (2018) 8254-8259.
- 105. A. Chaus, B.F.J.C.D. Uretsky, Therapy, Bioresorbable Vascular Scaffolds: a Dissolving Dream?, 37(1) (2023) 1-3.
- 106. M. Maqbool, U. Ikram, A.J.I.A.J.O.P.S. Anwar, Adverse drug reaction monitoring and occurrence in drugs used in pulmonary disorders, 5(8) (2018) 8060-8065.
- 107. S.K. Sharma, M.I. Tomey, P.S. Teirstein, A.S. Kini, A.B. Reitman, A.C. Lee, P. Généreux, J.W. Chambers, C.L. Grines, S.I.J.C.C.I. Himmelstein, North American expert review of rotational atherectomy, 12(5) (2019) e007448.
- 108. F. Bouisset, E. Barbato, K. Reczuch, S. Dobrzycki, M. Meyer-Gessner, E. Bressollette, G. Cayla, T. Lhermusier, W. Zajdel, M.J.E.J.o.E.i.C.w.t.W.G.o.I.C.o.t.E.S.o.C. Ferenc, Clinical outcomes of PCI with rotational atherectomy: the European multicentre Euro4C registry, 16(4) (2020) e305-e312.
- 109. K. Jin, S. Khonsari, R. Gallagher, P. Gallagher, A.M. Clark, B. Freedman, T. Briffa, A. Bauman, J. Redfern, L.J.E.J.o.C.N. Neubeck, Telehealth interventions for the secondary prevention of coronary heart disease: a systematic review and meta-analysis, 18(4) (2019) 260-271.

- 110. K. Rees, A. Takeda, N. Martin, L. Ellis, D. Wijesekara, A. Vepa, A. Das, L. Hartley, S.J.C.D.o.S.R. Stranges, Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease, (3) (2019).
- 111. S.K. Zyryanov, S.B. Fitilev, A.V. Vozzhaev, I.I. Shkrebniova, N.N. Shindryaeva, D.A. Klyuev, L.N. Stepanyan, N.N. Landyshev, Y.G.J.R.R.i.P. Voronko, Medication adherence in patients with stable coronary artery disease in primary care, 6(2) (2020) 97-103.
- 112. T.A. Wadden, J.S. Tronieri, M.L.J.A.p. Butryn, Lifestyle modification approaches for the treatment of obesity in adults, 75(2) (2020) 235.
- 113. G.K. Bhatti, A.P. Reddy, P.H. Reddy, J.S.J.F.i.a.n. Bhatti, Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer's disease, 11 (2020) 369.
- 114. P. Jepma, H.T. Jorstad, M. Snaterse, G. Ter Riet, H. Kragten, S. Lachman, M. Minneboo, S.M. Boekholdt, R.J. Peters, W.S.J.H. Op Reimer, Lifestyle modification in older versus younger patients with coronary artery disease, 106(14) (2020) 1066-1072.
- 115. M.-E. Piché, P. Poirier, A. Marette, P. Mathieu, V. Levesque, K. Bibeau, E. Larose, J.-P.J.M.S. Despres, R. Disorders, Benefits of 1-year lifestyle modification program on exercise capacity and diastolic function among coronary artery disease men with and without type 2 diabetes, 17(3) (2019) 149-159.
- 116. C. Ge, J. Ma, Y. Xu, Y.-J. Shi, C.-H. Zhao, L. Gao, J. Bai, Y. Wang, Z.-J. Sun, J.J.J.o.g.c.J. Guo, Predictors of adherence to home-based cardiac rehabilitation program among coronary artery disease outpatients in China, 16(10) (2019) 749.
- 117. P.C. Hong, K.J. Chen, Y.C. Chang, S.M. Cheng, H.H.J.J.o.N.S. Chiang, Effectiveness of theory-based health information technology interventions on coronary artery disease self-management behavior: a clinical randomized waitlist-controlled trial, 53(4) (2021) 418-427.
- 118. S.V. Arnold, D.L. Bhatt, G.W. Barsness, A.L. Beatty, P.C. Deedwania, S.E. Inzucchi, M. Kosiborod, L.A. Leiter, K.J. Lipska, J.D.J.C. Newman, Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement from the American Heart Association, 141(19) (2020) e779-e806.
- 119. B.J. Turner, C.S. Hollenbeak, M. Weiner, T. Ten Have, S.S.J.A.o.i.m. Tang, Effect of unrelated comorbid conditions on hypertension management, 148(8) (2008) 578-586.
- 120. P.K. Newland, R. Lorenz, C. Budhathoki, M.P.J.C.n.r. Jensen, The presence of symptoms with comorbid conditions in individuals with multiple sclerosis (MS), 25(5) (2016) 532-548.
- 121. R. Ferrari, H. Abergel, I. Ford, K.M. Fox, N. Greenlaw, P.G. Steg, D. Hu, M. Tendera, J.-C. Tardif, C.i.J.I.j.o. cardiology, Gender-and age-related differences in clinical presentation and management of outpatients with stable coronary artery disease, 167(6) (2013) 2938-2943.